A Neural Network Adaptive Controller for Autonomous Diving Control of an Autonomous Underwater Vehicle

نویسندگان

  • Ji-Hong Li
  • Pan-Mook Lee
  • Bong-Huan Jun
چکیده

This paper presents a neural network adaptive controller for autonomous diving control of an autonomous underwater vehicle (AUV) using adaptive backstepping method. In general, the dynamics of underwater robotics vehicles (URVs) are highly nonlinear and the hydrodynamic coefficients of vehicles are difficult to be accurately determined a priori because of variations of these coefficients with different operating conditions. In this paper, the smooth unknown dynamics of a vehicle is approximated by a neural network, and the remaining unstructured uncertainties, such as disturbances and unmodeled dynamics, are assumed to be unbounded, although they still satisfy certain growth conditions characterized by ‘bounding functions’ composed of known functions multiplied by unknown constants. Under certain relaxed assumptions pertaining to the control gain functions, the proposed control scheme can guarantee that all the signals in the closed-loop system satisfy to be uniformly ultimately bounded (UUB). Simulation studies are included to illustrate the effectiveness of the proposed control scheme, and some practical features of the control laws are also discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybrid Adaptive Neural Network AUV controller design with Sliding Mode Robust Term

This work addresses an autonomous underwater vehicle (AUV) for applying nonlinear control which is capable of disturbance rejection via intelligent estimation of uncertainties. Adaptive radial basis function neural network (RBF NN) controller is proposed to approximate unknown nonlinear dynamics. The problem of designing an adaptive RBF NN controller was augmented with sliding mode robust term ...

متن کامل

A neural network adaptive controller design for free-pitch-angle diving behavior of an autonomous underwater vehicle

This paper presents a neural network adaptive controller for diving control of an autonomous underwater vehicle (AUV). In general, while deriving the diving equations of an AUV, the pitch angle of the vehicle is often assumed to be small in the diving motion. This is a somewhat strong restricting condition in many practical applications, and would be broken in this paper. Furthermore, because t...

متن کامل

Modeling and Intelligent Control System Design for Overtaking Maneuver in Autonomous Vehicles

The purpose of this study is to design an intelligent control system to guide the overtaking maneuver with a higher performance than the existing systems. Unlike the existing models which consider constant values for some of the effective variables of this behavior, in this paper, a neural network model is designed based on the real overtaking data using instantaneous values for variables. A fu...

متن کامل

Depth Controls of an Autonomous Underwater Vehicle by Neurocontrollers for Enhanced Situational Awareness

This paper focuses on a critical component of the situational awareness (SA), the neural control of autonomous constant depth flight of an autonomous underwater vehicle (AUV). Autonomous constant depth flight is a challenging but important task for AUVs to achieve high level of autonomy under adverse conditions. The fundamental requirement for constant depth flight is the knowledge of the depth...

متن کامل

Adaptive Robust Control for Trajectory Tracking of Autonomous underwater Vehicles on Horizontal Plane

This manuscript addresses trajectory tracking problem of autonomous underwater vehicles (AUVs) on the horizontal plane. Adaptive sliding mode control is employed in order to achieve a robust behavior against some uncertainty and ocean current disturbances, assuming that disturbance and its derivative are bounded by unknown boundary levels. The proposed approach is based on a dual layer adaptive...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004